Bạn có chú ý trong đời sống hàng ngày có bao nhiêu loại hình khảm, đó là các mảnh hình khảm ghép lại với nhau mà thành.

Yêu cầu của các hình khảm là khi các đường chu vi gặp nhau tổng các góc phải bằng 360o, nhờ vậy khi ghép chúng lại sẽ không có khe hở. Nếu dùng các mảnh khảm gồm các hình nhiều cạnh thì có bao nhiêu cách lắp ghép? 1:Unb I

Hlnh4

lil nh 2

1-linh] lfinh 6

Hinh? Hinh8 l:linh9

Hinh 10 1-linh II

Hinh 12 Efinh 13

Trước hết xem xét từ khía cạnh các điểm gặp nhau của các hình có nhiều cạnh. Do các góc trong của các đa giác nhỏ nhất là 60o, lớn nhất là 180o nên chỉ có các hình 3, 4, 5, 6 cạnh là có thể sử dụng. Ta thử xét ba tình huống. Ta gọi các hình đa giác có các số cạnh là x, y, z thì các góc trong sẽ là:

Khi ghép chúng lại với nhau để khảm thì

Bởi vì 1/x + 1/y + 1/z = 1/2

Không kể trật tự sắp xếp của các số x, y, z thì phương trình này có 10 nhóm nghiệm là: (3, 7, 42); (3, 8, 24); (3, 9, 18); (3, 10, 15); (3, 12, 12); (4, 5, 20); (4, 6, 12); (4, 8, 8); (5, 5, 10); (6, 6, 6).

Cũng với lí luận tương tự khi chọn phương án bốn loại đa giác ta có bốn nhóm nghiệm: (3, 3, 4, 12); (3, 3, 6, 6); (3, 4, 4, 6); (4, 4, 4, 4).

Với phương án năm loại đa giác sẽ có hai nhóm nghiệm (3, 3, 3, 3, 6) và (3, 3, 3, 4, 4), còn nếu dùng sáu loại đa giác thì chỉ có một nhóm nghiệm (3, 3, 3, 3, 3, 3).

Như vậy nếu xét theo quan điểm, điểm giao nhau của các đa giác đều có 17 loại cách phối trí khác nhau. Thế nhưng có phải cả 17 phương án này đều có thể sử dụng trong kĩ thuật nạm khảm. Thực tế chỉ có các đa giác đều có 3, 4, 6, 8, 12 cạnh là có thể ghép nối vào nhau để khảm làm 11 loại khảm ghép để lấp kín bề mặt mà không có khe hở, còn sáu loại đa giác khác chưa tìm được cách ghép thành công.

Thế thì từ 11 loại tình huống có thể có cách sắp xếp nào? Chúng ta có thể bàn đến bốn loại sắp xếp chính:

Các hình khảm đều: Tức là dùng cách lắp ghép các đa giác cùng loại như ở các hình vẽ 1 – 3. Chỉ có 3 loại lắp ghép (6, 6, 6); (4, 4, 4, 4) và (3, 3, 3, 3, 3).

Các hình khảm nửa đều: Dùng cách lắp ghép các hình đa giác không đồng nhất nhưng số điểm giao nhau của đường biên các đa giác đều giống nhau như ở các hình vẽ từ 4 – 9. Có 6 loại (3, 12, 12); (4, 8, 8); (3, 3, 6, 6); (3, 4, 4, 6); (3, 3, 3, 6) và (3, 3, 3, 4, 4).