Làm thế nào để nhận biết một số tự nhiên chia hết cho 2, 3, 4, 5, 7, 9, 11?

Một số chia hết cho 4 nếu tổng của chữ số hàng đơn vị và chữ số hàng chục nhân đôi chia hết cho 4 thì số đó chia hết cho 4. Một số tự nhiên chia hết cho 8 nếu tổng của chữ số hàng đơn vị cộng với chữ số hàng chục nhân đôi và chữ số hàng trăm nhân 4 chia hết cho 8 thì số đó chia hết cho 8. Ví dụ số 1390276 chia hết cho 4 vì 6 + 2 x 7 = 20 chia hết cho 4 nên số 1390276 chia hết cho 4. Số 1390276 không chia hết cho 8 vì theo quy tắc 6 + 2 x 7 + 4 x 2 = 28 không chia hết cho 8.

Cách chứng minh quy tắc vừa nêu cũng tương tự như cách chứng minh ở 3.

Ta viết ví dụ:

A = [ (10 – 2) a1 + (102 – 4)a2 + 103a3 + …] +(a0 + 2a1 + 4a2).

Dễ dàng nhận thấy biểu thức trong ngoặc vuông là bội số của 8 và A sẽ chia hết cho 8 nếu hạng số thứ hai của A phía bên phải (biểu thức trong ngoặc đơn) là bội số của 8.

Một số chia hết cho 11 nếu hiệu số của tổng các số chẵn và tổng các chữ số hàng lẻ là bội số của 11. Ví dụ với số 268829 tổng các chữ số ở hàng lẻ 9 + 8 + 6 = 23, tổng các chữ số hàng chẵn là 2 + 8 + 2 = 12 hiệu của chúng đúng bằng 11 nên số này sẽ chia hết cho 11. Lại như với số 1257643 thì hiệu của hai tổng các chữ số là (3 + 6 + 5 + 1) – (4 + 7 + 2) = 2. Vì không phải là bội số của 11 nên số này không chia hết cho 11. Để chứng minh quy tắc ta viết:

A = [ (10 + 1)a1 + (102 – 1)a2 + (103 + 1)a3 + (104 – 1)a4 +…] + [(a0 + a2 +…) – (a1 + a3 + …)].

Số hạng thứ nhất của A là bội số của 11 nên nếu số hạng thứ hai là bội số của 11 (hiệu của tổng các chữ số ở hàng chẵn và các chữ số ở hàng lẻ) đương nhiên là A sẽ chia hết cho 11.

Chứng minh quy tắc chia hết cho 7 khá phức tạp mà ý nghĩa thực tiễn lại hạn chế nên ở đây chỉ giới thiệu quy tắc mà không đi sâu vào cách chứng minh.

Bạn hãy nhớ kĩ dãy hệ số tuần hoàn sau đây: 1, 2, 3, -1, -2, -3, 1, 3, 2,…

Muốn phán đoán về tính chia hết của một số tự nhiên bất kì có chia hết cho 7 hay không các bạn hãy nhân các chữ số với dãy số đã nêu, sau đó tính tổng số của chúng. Ví dụ, bạn hãy nhân các chữ số bắt đầu từ chữ số đơn vị là hệ số 1, chữ số hàng chục là hệ số 3, chữ số hàng trăm với hệ số 2, chữ số hàng ngàn với hệ số -1, v.v. rồi tính tổng đại số của các tích thu được. Nếu tổng số vừa tính được chia hết cho 7 thì số đó sẽ chia hết cho 7. Ví dụ xét số 5125764 chia hết cho 7 vì: 4 + 2 x 6 + 2 x 7 – 5- 3 x 2 -2 x 1 + 5 = 28 chia hết cho 7.