Số π được tính như thế nào?
Số pi (π) là gì?
Số pi là tỉ số giữa chu vi vòng tròn với đường kính. Cho dù vòng tròn có to đến mấy thì tỉ số này vẫn như vậy, nên đó là một hằng số. Trong toán học người ta gọi là số pi. π là chữ cái đầu tiên trong từ chu vi của tiếng Hy Lạp.
Trong cuộc sống hàng ngày, trong hoạt động sản xuất, số π được sử dụng rất rộng rãi và cũng là một số rất đặc biệt.
Nhưng giá trị của số π bằng bao nhiêu?
Từ xưa đến nay, không biết có bao nhiêu nhà toán học đã lao tâm khổ tứ để tính số π và tính giá trị số π ngày càng chính xác hơn. Nói chung để tính số π người ta lợi dụng chu vi của các đa giác đều nội tiếp hoặc ngoại tiếp vòng tròn để thay thế gần đúng chu vi của vòng tròn. Ban đầu người ta cho rằng có thể tính được đến cùng toàn bộ giá trị của số π. Thế nhưng tính đi tính lại, càng tính lại càng thấy không thể tính được đến cùng. Mãi đến thế kỉ thứ XIX, nhà toán học Đức Lindeman (1882) mới chứng minh được số π là số vô tỉ (số thập phân vô hạn, không tuần hoàn) theo một quy tắc nhất định có thể tính đến vô hạn, không giống như phân số như 1/3, tuy là “vô tận” nhưng lại đơn giản. Dưới đây chúng ta sẽ xem xét cống hiến của các nhà toán học về cách tính số π.
Từ xa xưa ở Trung Quốc đã có câu “chu vi ba, đường kính một” (tức π = 3). Ngay từ năm 100 trước Công nguyên (vào thời Tây Hán) trong sách “Chu bì toán kinh” đã có nói về vấn đề này. Đến thời Đông Hán, nhà toán học, thiên văn học Trương Hoành (năm 78- 139) đã dùng một số kì diệu là căn bậc hai của số 10 làm số π (√10 = 3,16).
Đây là con số rất dễ nhớ. Vào thời Nguỵ – Tấn, nhà toán học Lưu Huy, vào năm 263 trong tác phẩm “Sách toán chín chương” đã chỉ ra rằng “Chu vi ba, đường kính một” chỉ là tỉ số giữa chu vi của hình lục giác đều nội tiếp trong vòng tròn với đường kính của vòng tròn, do đó chỉ có thể dùng để tính diện tích của hình đa giác đều 12 cạnh nội tiếp trong vòng tròn. Để tính được diện tích hình tròn chính xác hơn, ông đã sáng tạo phương pháp cắt nhỏ vòng tròn. Dùng phương pháp chia nhỏ vòng tròn ông đã tính diện tích của hình 192 cạnh đều nội tiếp trong vòng tròn và tìm được số π = 157/30 = 3,14. Về sau Lưu Huy lại tiếp tục tính diện tích của hình đa giác 3072 cạnh đều nội tiếp trong vòng tròn và tính được số π đến độ chính xác π = 3927/1250 = 3,1416. Lưu Huy đã dùng phương pháp tính diện tích của các đa giác đều nội tiếp trong vòng tròn để tìm giá trị gần đúng diện tích của hình tròn chính là quan niệm giới hạn, một sáng tạo rất lớn trong toán học.