Thế nào là dự đoán Goldbach?

Vào ngày 7-6-1742, nhà toán học Đức Goldbach đã gửi cho giáo sư Euler một dự đoán “Bất kì một số lẻ nào lớn hơn 5 đều là tổng của 3 số nguyên tố”. Ngày 30-6 năm đó, Euler đã viết thư trả lời Goldbach cho rằng dự đoán là chính xác và đưa ra một dự đoán “Bất kì một số chẵn nào lớn hơn hai đều là tổng của hai số nguyên tố”, nhưng bấy giờ họ đã không chứng minh được các mệnh đề đó.

Hai vấn đề này đã lôi cuốn sự hứng thú của đông đảo các nhà toán học, đó chính là “dự đoán Goldbach” nổi tiếng. Từ đó đã bắt đầu một công cuộc chứng minh gian nan “dự đoán Goldbach”.

Do dự đoán Goldbach một thời gian dài chưa được chứng minh nên tại Hội nghị quốc tế toán học năm 1912 đưa ra một dự đoán yếu ớt hơn: Tồn tại một số nguyên C để cho một số nguyên lớn hơn hoặc bằng 2 sẽ được biểu diễn bằng tổng hai số nguyên tố không lớn hơn C.

Năm 1930, nhà toán học Liên Xô 25 tuổi là Sineyrilman đã đưa ra chứng minh cho mệnh đề C. Ông còn đưa ra mệnh đề với điều kiện C không lớn hơn S, S ≤ 800.000. Sau này S được gọi là số Sineyrilman. Đây là bước đột phá trong quá trình chứng minh dự đoán Goldbach.

Năm 1937, nhà toán học Liên Xô Vinogradov đã dùng phương pháp “viên chu” và phương pháp do ông sáng tạo là phương pháp phối hợp đã chứng minh rằng: Với một số lẻ đủ lớn đều có thể biểu diễn bằng tổng của ba số nguyên tố lẻ.

Đây lại là bước đột phá lớn nhất để giải quyết dự đoán Goldbach và đó được gọi là định lí ba số nguyên tố.

Trong quá trình chứng minh dự đoán Goldbach người đã đưa ra mệnh đề, với một số chẵn đủ lớn, ta có thể biểu diễn bằng các nhân tử và không vượt quá tổng các nhân tử là m và n nhân với hai số nào đó.

Mệnh đề này được ghi là “ m + n”. Ví dụ “3 + 4” là phải chứng minh với số chẵn đủ lớn thì có thể biểu diễn bằng tổng các nhân tử là 3, nhân với một số và 4 nhân với một số khác. Còn “1 + 1” có nghĩa với số chẵn đủ lớn thì có thể biểu diễn bằng tổng hai số nguyên tố. Nếu chứng minh được “1 + 1” thì trên cơ bản là chứng minh được dự đoán Goldbach “Định lí ba số nguyên tố” chỉ là loại suy đoán quan trọng từ dự đoán Goldbach.