Vì sao con “mã” lại có thể đi đến vị trí bất kì trên bàn cờ tướng?

Nếu bạn cần lấy 255 quả táo thì đương nhiên ta chỉ có một đáp án là:

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255.

Thế dãy số trên đây từ đâu mà có? Để giải đáp câu hỏi này ta cần quay lại cách ghi số trong các hệ đếm.

Thông thường người ta ghi số theo hệ đếm thập phân gồm 10 chữ số: 0, 1, 2,…, 9. Dùng hệ đếm thập phân ta có thể ghi lại bất kì số tự nhiên nào.

Trong máy tính người ta lại dùng cách ghi số theo hệ đếm nhị phân. Các chữ số dùng để ghi số trong hệ nhị phân là hai chữ số 0 và

Dùng cách ghi số theo hệ đếm nhị phân người ta cũng có thể ghi bất kì một số tự nhiên nào.

Chúng ta có thể theo quy tắc, chuyển cách ghi số từ hệ đếm thập phân sang hệ đếm nhị phân và ngược lại. Ví dụ số 55 là tổng của các số 32, 16, 4, 2, 1 ghi theo hệ đếm nhị phân là 110111. Mà số 110111 viết theo hệ đếm cơ số 10 là 1 x 20 + 1 x 21 x 1 x 22 + 0 x 23 + 1 x 24 + 1 x 25 = 1 + 2 + 4 + 16 + 32 = 55

Bây giờ ta đã thấy rõ được lí do của đáp án trên kia, vì cách chia 255 thành 8 số 20, 21, 22, 23, 24… nhờ cách phân chia này, mỗi số của mỗi giỏ tương đương với một vị trí trong cách ghi số theo cơ số hai gồm hai chữ số 1 và 0 và dựa vào đó mà chọn hay không chọn. Nếu số hiệu của các giỏ cúng chính là số vị trí của các số theo hệ đếm cơ số hai từ phải sang trái ví dụ 55 thì tương đương với 110111 trong hệ đếm cơ số 2 tức là chọn các giỏ có số thứ tự 1, 2, 3, 5 và 6 ta sẽ nhận được 55 quả táo như đáp án đã nêu. Ở đây ta không chọn giỏ số bốn vì theo cách ghi số 55 theo cơ số hai, giỏ số bốn ở vị trí có chữ số 0.

Từ khoá: Hệ đếm cơ số 1; Hệ đếm cơ số 2.