Công thức nghiệm của phương trình bậc 2 và cách giải các dạng bài tập

Như đã giới thiệu ở trên, phương trình bậc 2 có dạng: ax2 + bx +c = 0 (a ≠0) sẽ có tối đa 2 nghiệm, gọi là x1 và x2. Khi đó, x1 và x2 sẽ thỏa mãn đồng thời cả 2 điều kiện, đó là:

x1 + x2 = -b/a

x1x2 = c/a

Khi làm bài tập về phương trình bậc 2, bạn có thể áp dụng định lý viet bằng cách biến đổi biểu thức để xuất hiện x1 + x2 và x1x2.

Bạn cũng có thể áp dụng định lý Viet đảo với 2 số x1 và x2 thỏa mãn 2 điều kiện:

x1 + x2 = S

x1x2 = P

Trong đó: cả x1 và x2 đều là nghiệm của phương trình x2 – Sx + P = 0.

Nhắc tới định lý Viet, chúng ta không thể bỏ qua ứng dụng của định lý này. Với phương trình bậc 2, bạn có thể dễ dàng tính được nghiệm của phương trình mà không cần áp dụng công thức tính nghiệm với một số trường hợp đặc biệt:

Trường hợp 1: a+b+c=0 thì phương trình có 2 nghiệm là x1 = 1 và x2 = c/a.

Trường hợp 2: a-b+c=0 thì phương trình có 2 nghiệm là x1 = -1 và x2 = -c/a. (Đây là trường hợp ngược lại của trường hợp 1, bạn cần nhìn kỹ dấu để tránh nhầm lẫn).

Công thức nghiệm của phương trình bậc 2
Công thức nghiệm của phương trình bậc 2

Phương trình bậc 2 có các dạng bài tập quan trọng

Dạng bài tập ứng dụng công thức nghiệm của phương trình bậc 2

Sau khi tìm hiểu công thức nghiệm của phương trình bậc 2, bạn cần lưu ý tới các dạng bài tập. Mỗi dạng bài tập sẽ có một phương pháp giải khác nhau. Áp dụng đúng phương pháp sẽ giúp bạn tiết kiệm thời gian và giải bài tập chính xác hơn.

Cụ thể, hiện nay phương trình bậc 2 có các dạng bài tập chủ yếu như:

Dạng 1: phương trình bậc 2 một ẩn không có tham số

Để giải dạng bài tập này, bạn cần áp dụng công thức Δ và Δ’ rồi áp dụng các công thức tính phương trình bậc 2 đã được giới thiệu ở trên. Qua đó tìm được nghiệm của phương trình.

Ví dụ: ta có phương trình: x2-3x+2=0. Áp dụng công thức tính Δ, ta sẽ có Δ = 1. Vậy 2 nghiệm của phương trình sẽ lần lượt là:

Dạng 2: phương trình bậc 2 một ẩn có tham số

Bên cạnh dạng không chứa tham số, phương trình bậc 2 một ẩn có tham số cũng là một dạng bài tập quan trọng. Để giải dạng bài tập này, bạn cũng cần sử dụng công thức tính Δ. Từ đó, dựa vào 3 trường hợp của Δ đã được giải thích ở trên, bạn có thể xác định được phương trình có nghiệm kép, có 2 nghiệm phân biệt hay vô nghiệm. Từ đó áp dụng công thức để tính được các giá trị nghiệm cụ thể.