Đường kính và dây của đường tròn – Học tốt Toán 9

Định lý 3:

Nếu đường kính mà đi qua trung điểm của 1 dây và không đi qua tâm trong 1 đường tròn thì vuông góc với dây đó.

Chứng minh:

Gọi I là giao điểm của đường kính AB và dây CD.

⇒ ΔOCD là tam giác cân tại O (Do OC = OD = R)

Mà ta có OI là trung tuyến của ΔOCD nên đồng thời cũng là đường cao của tam giác.

⇒ Vậy OI ⊥ CD tại điểm I.

Đường kính qua trung điểm 1 dây không đi qua tâm sẽ vuông góc với dây đó

Lưu ý:

Trong quan hệ vuông góc giữa đường kính với dây đường tròn, nếu đường kính mà đi qua trung điểm của 1 dây thì có thể sẽ không vuông góc với đó.

Giả sử 2 đường kính của đường tròn (O , R) là AB và CD.

Khi đó ta có CD cũng là 1 dây cung của đường tròn tâm O.

Mà O ∈ CD đồng thời OC = OD (do CD là đường kính của đường tròn tâm O)

⇒ O chính là trung điểm của CD.

⇒ Khi đó, đường kính AB sẽ đi qua trung điểm O của CD nhưng đường kính sẽ không vuông góc với dây đường tròn.

Lưu ý trong quan hệ vuông góc giữa đường kính và dây đường tròn

Sự xác định đường tròn tính chất đối xứng của đường tròn

II. Bài tập đường kính và dây của đường tròn sbt:

Trên đây là bài giảng về đường kính và dây của đường tròn, để củng cố lại lý thuyết của bài học, dưới đây là một số bài toán cơ bản về dạng kiến thức này giúp các em hệ thống hóa lại kiến thức cho quá trình ôn tập cũng như luyện thi được hiệu quả.

Bài tập 1: (Bài 15/SBT Tập 1, Toán 9, trang 158)

Cho ΔABC, đường cao CK và BH. Chứng minh rằng:

B, C, H, K là 4 điểm không cùng thuộc 1 đường tròn.

HK < BC.

Bài tập 2: (Bài 16/SBT Tập 1, Toán 9, trang 159)

Cho tứ giác ABCD có góc B = góc B = 90⁰

Chứng minh A, B, C, D là 4 điểm cùng thuộc trên 1 đường tròn.

So sánh độ dài của cung AB và cung BD. Nếu như AC = BD thì ABCD là tứ giác gì? Tại sao?

Bài tập 3: (Bài 17/SBT Tập 1, Toán 9, trang 159)

Cho nửa đường tròn (O,AB) (Tâm O, đường kính AB) và dây EF không cắt với đường kính. Gọi K và I lần lượt là chân đường vuông góc kẻ từ B và A đến dây EF. Chứng minh IE = KF.

Bài giảng đường kính và dây của đường tròn trên đã cung cấp kiến thức về lý thuyết cũng như các dạng bài tập cơ bản về bài học này. Hy vọng đây sẽ là những thông tin bổ ích dành cho các bạn học sinh và quý phụ huynh có nhu cầu giảng dạy và ôn tập cho con em của mình. Đừng quên thường xuyên truy cập Vietlearn.org/ để cập nhật thêm những kiến thức môn học khác nhé!